Monte Carlo convolution for learning on non-uniformly sampled point clouds

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Monte Carlo for Estimating Exponential Convolution

We study the numerical stability problem that may take place when calculating the cumulative distribution function of the Hypoexponential random variable. This computation is extensively used during the execution of Monte Carlo network reliability estimation algorithms. In spite of the fact that analytical formulas are available, they can be unstable in practice. This instability occurs frequen...

متن کامل

Downsampling Non-Uniformly Sampled Data

Decimating a uniformly sampled signal a factor D involves low-pass antialias filtering with normalized cutoff frequency 1/D followed by picking out every Dth sample. Alternatively, decimation can be done in the frequency domain using the fast Fourier transform (FFT) algorithm, after zero-padding the signal and truncating the FFT. We outline three approaches to decimate nonuniformly sampled sign...

متن کامل

Personalized Ranking for Non-Uniformly Sampled Items

We develop an adapted version of the Bayesian Personalized Ranking (BPR) optimization criterion (Rendle et al., 2009) that takes the non-uniform sampling of negative test items — as in track 2 of the KDD Cup 2011 — into account. Furthermore, we present a modified version of the generic BPR learning algorithm that maximizes the new criterion. We use it to train ranking matrix factorization model...

متن کامل

On learning strategies for evolutionary Monte Carlo

The real-parameter evolutionary Monte Carlo algorithm (EMC) has been proposed as an effective tool both for sampling from high-dimensional distributions and for stochastic optimization (Liang and Wong, 2001). EMC uses a temperature ladder similar to that in parallel tempering (PT; Geyer, 1991). In contrast with PT, EMC allows for crossover moves between parallel and tempered MCMC chains. In the...

متن کامل

Shape classification and normal estimation for non-uniformly sampled, noisy point data

We present an algorithm for robustly analyzing point data arising from sampling a 2D surface embedded in 3D, even in the presence of noise and nonuniform sampling. The algorithm outputs, for each data point, a surface normal, a local surface approximation in the form of a one-ring, the local shape (flat, ridge, bowl, saddle, sharp edge, corner, boundary), the feature size, and a confidence valu...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: ACM Transactions on Graphics

سال: 2019

ISSN: 0730-0301,1557-7368

DOI: 10.1145/3272127.3275110